Home | Sources Directory | News Releases | Calendar | Articles | RSS Sources Select News RSS Feed | Contact |  

Chromosomal crossover

Thomas Hunt Morgan's illustration of crossing over (1916)
A double crossing over
Recombination involves the breakage and rejoining of parental chromosomes
Holliday Junction
Molecular structure of a Holliday junction.

Chromosomal crossover (or crossing over) is an exchange of genetic material between homologous chromosomes. It is one of the final phases of genetic recombination, which occurs during prophase I of meiosis (diplotene) in a process called synapsis. Synapsis begins before the synaptonemal complex develops, and is not completed until near the end of prophase I. Crossover usually occurs when matching regions on matching chromosomes break and then reconnect to the other chromosome.

Crossing over was described, in theory, by Thomas Hunt Morgan. He relied on the discovery of the Belgian Professor Frans Alfons Janssens of the University of Leuven who described the phenomenon in 1909 and had called it 'chiasmatypie'. The term chiasma is linked if not identical to chromosomal crossover. Morgan immediately saw the great importance of Janssens' cytological interpretation of chiasmata to the experimental results of his research on the heredity of Drosophila. The physical basis of crossing over was first demonstrated by Harriet Creighton and Barbara McClintock in 1931.[1]

Contents

[edit] Chemistry

Meiotic recombination initiates with double-stranded breaks that are introduced into the DNA by the Spo11 protein.[2] One or more exonucleases then digest the 5â ends generated by the double-stranded breaks to produce 3â single-stranded DNA tails. The meiosis-specific recombinase Dmc1 and the general recombinase Rad51 coat the single-stranded DNA to form nucleoprotein filaments.[3] The recombinases catalyze invasion of the opposite chromatid by the single-stranded DNA from one end of the break. Next, the 3â end of the invading DNA primes DNA synthesis, causing displacement of the complementary strand, which subsequently anneals to the single-stranded DNA generated from the other end of the initial double-stranded break. The structure that results is a cross-strand exchange, also known as a Holliday junction. The contact between two chromatids that will soon undergo crossing-over is known as a chiasma. The Holliday junction is a tetrahedral structure which can be 'pulled' by other recombinases, moving it along the four-stranded structure.

[edit] Consequences

In most eukaryotes, a cell carries two copies of each gene, each referred to as an allele. Each parent passes on one allele to each offspring. An individual gamete inherits a complete haploid complement of alleles on chromosomes that are independently selected from each pair of chromatids lined up on the metaphase plate. Without recombination, all alleles for those genes linked together on the same chromosome would be inherited together. Meiotic recombination allows a more independent selection between the two alleles that occupy the positions of single genes, as recombination shuffles the allele content between homologous chromosomes.

Recombination does not have any influence on the statistical probability that another offspring will have the same combination. This theory of "independent assortment" of alleles is fundamental to genetic inheritance. However, there is an exception that requires further discussion.

The difference between gene conversion and chromosomal crossover. Blue is the two chromatids of one chromosome and red is the two chromatids of another one.

The frequency of recombination is actually not the same for all gene combinations. This leads to the notion of "genetic distance", which is a measure of recombination frequency averaged over a (suitably large) sample of pedigrees. Loosely speaking, one may say that this is because recombination is greatly influenced by the proximity of one gene to another. If two genes are located close together on a chromosome, the likelihood that a recombination event will separate these two genes is less than if they were farther apart. Genetic linkage describes the tendency of genes to be inherited together as a result of their location on the same chromosome. Linkage disequilibrium describes a situation in which some combinations of genes or genetic markers occur more or less frequently in a population than would be expected from their distances apart. This concept is applied when searching for a gene that may cause a particular disease. This is done by comparing the occurrence of a specific DNA sequence with the appearance of a disease. When a high correlation between the two is found, it is likely that the appropriate gene sequence is really closer.

[edit] Problems

Although crossovers typically occur between homologous regions of matching chromosomes, similarities in sequence can result in mismatched alignments. These processes are called unbalanced recombination. Unbalanced recombination is fairly rare compared to normal recombination, but severe problems can arise if a gamete containing unbalanced recombinants becomes part of a zygote. The result can be a local duplication of genes on one chromosome and a deletion of these on the other, a translocation of part of one chromosome onto a different one, or an inversion.

[edit] References

  1. ^ Creighton H, McClintock B (1931). "A Correlation of Cytological and Genetical Crossing-Over in Zea Mays". Proc Natl Acad Sci USA 17 (8): 492â7. doi:10.1073/pnas.17.8.492. PMID 16587654.  (Original paper)
  2. ^ Keeney, S; Giroux, CN; Kleckner, N (1997). "Meiosis-Specific DNA Double-Strand Breaks Are Catalyzed by Spo11, a Member of a Widely Conserved Protein Family". Cell 88 (3): 375. doi:10.1016/S0092-8674(00)81876-0. PMID 9039264. 
  3. ^ Sauvageau, S; Stasiak, Az; Banville, I; Ploquin, M; Stasiak, A; Masson, Jy (Jun 2005). "Fission yeast rad51 and dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments." (Free full text). Molecular and cellular biology 25 (11): 4377â87. doi:10.1128/MCB.25.11.4377-4387.2005. ISSN 0270-7306. PMID 15899844. PMC 1140613. http://mcb.asm.org/cgi/pmidlookup?view=long&pmid=15899844. 

[edit] See also



Related Articles & Resources

Sources Subject Index - Experts, Sources, Spokespersons

Sources Select Resources Articles







This article is based on one or more articles in Wikipedia, with modifications and additional content by SOURCES editors. This article is covered by a Creative Commons Attribution-Sharealike 3.0 License (CC-BY-SA) and the GNU Free Documentation License (GFDL). The remainder of the content of this website, except where otherwise indicated, is copyright SOURCES and may not be reproduced without written permission. (For information call 416-964-7799 or use the Contact form.)

SOURCES.COM is an online portal and directory for journalists, news media, researchers and anyone seeking experts, spokespersons, and reliable information resources. Use SOURCES.COM to find experts, media contacts, news releases, background information, scientists, officials, speakers, newsmakers, spokespeople, talk show guests, story ideas, research studies, databases, universities, associations and NGOs, businesses, government spokespeople. Indexing and search applications by Ulli Diemer and Chris DeFreitas.

For information about being included in SOURCES as a expert or spokesperson see the FAQ or use the online membership form. Check here for information about becoming an affiliate. For partnerships, content and applications, and domain name opportunities contact us.


Sources home page