Home | Sources Directory | News Releases | Calendar | Articles | RSS Sources Select News RSS Feed | Contact |  

Fourier transform infrared spectroscopy

Fourier transform infrared spectroscopy (FTIR)[1] is a technique which is used to obtain an infrared spectrum of absorption, emission, photoconductivity or Raman scattering of a solid, liquid or gas. An FTIR spectrometer simultaneously collects spectral data in a wide spectral range. This confers a significant advantage over a dispersive spectrometer which measures intensity over a narrow range of wavelengths at a time. FTIR technique has made dispersive infrared spectrometers all but obsolete (except sometimes in the near infrared) and opened up new applications of infrared spectroscopy.

The term Fourier transform infrared spectroscopy originates from the fact that a Fourier transform (a mathematical algorithm) is required to convert the raw data into the actual spectrum. For other uses of this kind of technique, see Fourier transform spectroscopy.

Contents

[edit] Conceptual introduction

An interferogram from an FTIR spectrometer. The horizontal axis is the position of the mirror, and the vertical axis is the amount of light detected. This is the "raw data" which can be transformed into an actual spectrum.

The goal of any absorption spectroscopy (FTIR, ultraviolet-visible ("UV-Vis") spectroscopy, etc.) is to measure how well a sample absorbs light at each wavelength. The most straightforward way to do this, the "dispersive spectroscopy" technique, is to shine a monochromatic light beam at a sample, measure how much of the light is absorbed, and repeat for each different wavelength. (This is how UV-Vis spectrometers work, for example.)

Fourier transform spectroscopy is a less intuitive way to obtain the same information. Rather than shining a monochromatic beam of light at the sample, this technique shines a beam containing many different frequencies of light at once, and measures how much of that beam is absorbed by the sample. Next, the beam is modified to contain a different combination of frequencies, giving a second data point. This process is repeated many times. Afterwards, a computer takes all this data and works backwards to infer what the absorption is at each wavelength.

The beam described above is generated by starting with a broadband light source—one containing the full spectrum of wavelengths to be measured. The light shines into a certain configuration of mirrors, called a Michelson interferometer, that allows some wavelengths to pass through but blocks others (due to wave interference). The beam is modified for each new data point by moving one of the mirrors; this changes the set of wavelengths that pass through.

As mentioned, computer processing is required to turn the raw data (light absorption for each mirror position) into the desired result (light absorption for each wavelength). The processing required turns out to be a common algorithm called the Fourier transform (hence the name, "Fourier transform spectroscopy"). The raw data is sometimes called an "interferogram".


[edit] Michelson interferometer

Schematic diagram of a Michelson interferometer, configured for FTIR

In a Michelson interferometer adapted for FTIR, light from the polychromatic infrared source, approximately a black-body radiator, is collimated and directed to a beam splitter. Ideally 50% of the light is reflected towards the fixed mirror and 50% is transmitted towards the moving mirror. Light is reflected from the two mirrors back to the beam splitter and (ideally) 50% of the original light passes into the sample compartment. There, the light is focussed on the sample. On leaving the sample compartment the light is refocused on to the detector. The difference in optical path length between the two arms to the interferometer is known as the retardation. An interferogram is obtained by varying the retardation and recording the signal from the detector for various values of the retardation. The form of the interferogram when no sample is present depends on factors such as the variation of source intensity and splitter efficiency with wavelength. This results in a maximum at zero retardation, when there is constructive interference at all wavelengths, followed by series of "wiggles". The position of zero retardation is determined accurately by finding the point of maximum intensity in the interferogram. When a sample is present the background interferogram is modulated by the presence of absorption bands in the sample.

There are two principle advantages for a FT spectrometer compared to a scanning (dispersive) spectrometer.[2][3]

  1. The multiplex or Fellgett's advantage. This arises from the fact that information from all wavelengths is collected simultaneously. It results in a higher Signal-to-noise ratio for a given scan-time or a shorter scan-time for a given resolution.
  2. The throughput or Jacquinot's advantage. This results from the fact that, in a dispersive instrument, the monochromator has entrance and exit slits which restrict the amount of light that passes through it. The interferometer throughput is determined only by the diameter of the collimated beam coming from the source.

Other minor advantages include less sensitivity to stray light,[3] and "Connes' advantage" (better wavelength accuracy)[3], while a disadvantage is that FTIR cannot use the advanced electronic filtering techniques that often makes its signal-to-noise ratio inferior to that of dispersive measurements.[3]

[edit] Resolution

The interferogram belongs in the length domain. Fourier transform (FT) inverts the dimension, so the FT of the interferogram belongs in the reciprocal length domain, that is the wavenumber domain. The spectral resolution in wavenumbers per cm is equal to the reciprocal of the maximum retardation in cm. Thus a 4 cm−1 resolution will be obtained if the maximum retardation is 0.25 cm; this is typical of the cheaper FTIR instruments. Much higher resolution can be obtained by increasing the maximum retardation. This is not easy as the moving mirror must travel in a near-perfect straight line. The use of corner-cube mirrors in place of the flat mirrors is helpful as an outgoing ray from a corner-cube mirror is parallel to the incoming ray, regardless of the orientation of the mirror about axes perpendicular to the axis of the light beam. Connes measured in 1966 the temperature of the atmosphere of Venus by recording the vibration-rotation spectrum of Venusian CO2 at 0.1 cm−1 resolution.[4] Michelson himself attempted to resolve the hydrogen Hî± emission band in the spectrum of a hydrogen atom into its two components by using his interferometer.[1] p25 A spectrometer with 0.001 cm−1 resolution is now available commercially from Bruker. The throughput advantage is important for high-resolution FTIR as the monochromaor in a dispersive instrument with the same resolution would have very narrow entrance and exit slits.

[edit] Beam splitter

The beam-splitter can not be made of a common glass, as it is opaque to infrared radiation of wavelengths longer than about 2.5 î¼m. A thin film, usually of a plastic material, is used instead. However, as any material has a limited range of optical transmittance, several beam-splitters are used interchangeably to cover a wide spectral range.

[edit] Fourier transform

The interferogram in practice consists of a set of intensities measured for discrete values of retardation. The difference between successive retardation values is constant. Thus, a discrete Fourier transform is needed. The fast Fourier transform (FFT) algorithm is used.

[edit] Far-infrared FTIR

The first FTIR spectrometers were developed for far-infrared range. The reason for this has to do with the mechanical tolerance needed for good optical performance, which is related to the wavelength of the light being used. For the relatively long wavelengths of the far infrared (~10 î¼m), tolerances are adequate, whereas for the rock-salt region tolerances have to better than 1 î¼m. A typical instrument was the cube interferometer developed at the NPL[5] and marketed by Grubb Parsons. It used a stepper motor to drive the moving mirror, recording the detector response after each step was completed.

[edit] Mid-infrared FTIR

With the advent of cheap microcomputers it became possible to have a computer dedicated to controlling the spectrometer, collecting the data, doing the Fourier transform and presenting the spectrum. This provided the impetus for the development of FTIR spectrometers for the rock-salt region. The problems of manufacturing ultra-high precision optical and mechanical components had to be solved. A wide range of instrument is now available commercially. Although instrument design has become more sophisticated, the basic principles remain the same. Nowadays, the moving mirror of the interferrometer moves at a constant velocity, and sampling of the interferogram is triggered by finding zero-crossings in the fringes of a secondary interferometer lit by a helium-neon laser. This confers high wavenumber accuracy on the resulting infrared spectrum and avoids wavenumber calibration errors.

[edit] Near-infrared FTIR

The near-infrared region spans the wavelength range between the rock-salt region and the start of the visible region at about 750 nm. Overtones of fundamental vibrations can be observed in this region. It is used mainly in industrial applications such as process control.

[edit] Applications

FTIR can be used in all applications where a dispersive spectrometer was used in the past (See external links). In addition, the multiplex and throughput advantages have opened up new areas of application. These include

  • GC-IR (gas chromatography-infrared spectrometry). A gas chromatograph can be used to separate the components of a mixture. The fractions containing single components are directed into an FTIR spectrometer, to provide the infrared spectrum of the sample. This technique is complementary to GC-MS (gas chromatography-mass spectrometry). The GC-IR method is particularly useful for identifying isomers, which by their nature have identical masses. The key to the successful use of GC-IR is that the interferogram can be captured in a very short time, typically less than 1 second. FTIR has also been applied to the analysis of liquid chromatography fractions.[3]
  • TG-IR (thermogravimetry-infrared spectrometry) IR spectra of the gases evolved during thermal decompostion are obtained as a function of temperature.[6]
  • Micro-samples. Tiny samples, such as in forensic analysis, can be examined with the aid of an infrared microscope in the sample chamber. An image of the surface can be obtained by scanning.[7] Another example is the use of FTIR to characterize artistic materials in old-master paintings.[8]
  • Emission spectra. Instead of recording the spectrum of light transmitted through the sample, FTIR spectrometer can be used to acquire spectrum of light emitted by the sample. Such emission could be induced by various processes, and the most common ones are luminescence and Raman scattering. Little modification is required to an absorption FTIR spectrometer to record emission spectra and therefore many commercial FTIR spectrometers combine both absorption and emission/Raman modes.[9]
  • Photocurrent spectra. This mode uses a standard, absorption FTIR spectrometer. The studied sample is placed instead of the FTIR detector, and its photocurrent, induced by the spectrometer's broadband source, is used to record the interferrogram, which is then converted into the photoconductivity spectrum of the sample.[10]

[edit] References

  1. ^ a b Griffiths, P.; de Hasseth, J.A. (18 May 2007). Fourier Transform Infrared Spectrometry (2nd ed.). Wiley-Blackwell. ISBN 0471194042. http://books.google.com/?id=C_c0GVe8MX0C&printsec=frontcover. 
  2. ^ Banwell, C.N.; McCash, E.M. (1994). Fundamentals of Molecular Spectroscopy (4th ed.). McGraw-Hill. ISBN 0-07-707976-0. 
  3. ^ a b c d e Robert White (1990). Chromatography/Fourier transform infrared spectroscopy and its applications. Marcel Dekker. ISBN 0824781910. http://books.google.com/?id=t2VSNnFoO3wC&pg=PA7. 
  4. ^ Connes, J.; Connes, P. (1966). "Near-Infrared Planetary Spectra by Fourier Spectroscopy. I. Instruments and Results". Journal of the Optical Society of America 56 (7): 896-910. doi:10.1364/JOSA.56.000896. 
  5. ^ Chamberain, J.; Gibbs,J.E.; Gebbie, H.E. (1969). "The determination of refractive index spectra by fourier spectrometry". Infrared Physics 9: 189–209. doi:10.1016/0020-0891(69)90023-2. 
  6. ^ Nishikida, K.; Nishio, E.; Hannah, R.W. (1995). Selected applications of FT-IR techniques. Gordon and Breach. p. 240. ISBN 2884490736. http://books.google.com/?id=Bjj7wSEP2lsC&pg=PA240. 
  7. ^ Beauchaine, J.P.; Peterman, J.W.; Rosenthal,R.J. (1988). "Applications of FT-IR/microscopy in forensic analysis". Microchimica Acta 94: 133–138. doi:10.1007/BF01205855. 
  8. ^ Prati, S.; Joseph, E.; Sciutto, G.; Mazzeo, R. (2010). "New Advances in the Application of FTIR Microscopy and Spectroscopy for the Characterization of Artistic Materials". Acc. Chem. Res. 43 (6): 792–801. doi:10.1021/ar900274f. PMID 20476733. 
  9. ^ Michael Gaft, Renata Reisfeld, Gérard Panczer (2005). Luminescence spectroscopy of minerals and materials. Springer. p. 263. ISBN 3540219188. http://books.google.com/?id=QBoTvW_h1FQC&pg=PA263. 
  10. ^ Jef Poortmans, Vladimir Arkhipov (2006). Thin film solar cells: fabrication, characterization and applications. John Wiley and Sons. p. 189. ISBN 0470091266. http://books.google.com/?id=SvVYBK6YAxAC&pg=PA189. 

[edit] External links



Related Articles & Resources

Sources Subject Index - Experts, Sources, Spokespersons

Sources Select Resources Articles







This article is based on one or more articles in Wikipedia, with modifications and additional content by SOURCES editors. This article is covered by a Creative Commons Attribution-Sharealike 3.0 License (CC-BY-SA) and the GNU Free Documentation License (GFDL). The remainder of the content of this website, except where otherwise indicated, is copyright SOURCES and may not be reproduced without written permission. (For information call 416-964-7799 or use the Contact form.)

SOURCES.COM is an online portal and directory for journalists, news media, researchers and anyone seeking experts, spokespersons, and reliable information resources. Use SOURCES.COM to find experts, media contacts, news releases, background information, scientists, officials, speakers, newsmakers, spokespeople, talk show guests, story ideas, research studies, databases, universities, associations and NGOs, businesses, government spokespeople. Indexing and search applications by Ulli Diemer and Chris DeFreitas.

For information about being included in SOURCES as a expert or spokesperson see the FAQ or use the online membership form. Check here for information about becoming an affiliate. For partnerships, content and applications, and domain name opportunities contact us.


Sources home page