Home | Sources Directory | News Releases | Calendar | Articles | RSS Sources Select News RSS Feed | Contact |  

Plant reproduction

Plant reproduction is the production of new individuals or offspring in plants, which can be accomplished by sexual or asexual means. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from the parent or parents. Asexual reproduction produces new individuals without the fusion of gametes, genetically identical to the parent plants and each other, except when mutations occur. In seed plants, the offspring can be packaged in a protective seed, which is used as an agent of dispersal.


[edit] Asexual reproduction

Plants have two main types of asexual reproduction in which new plants are produced that are genetically identical clones of the parent individual. "Vegetative" reproduction involves a vegetative piece of the original plant (budding, tillering, etc.) and is distinguished from "apomixis", which is a "replacement" for sexual reproduction, and in some cases involves seeds. Apomixis occurs in many plant species and also in some non-plant organisms. For apomixis and similar processes in non-plant organisms, see parthenogenesis.

Natural vegetative reproduction is mostly a process found in herbaceous and woody perennial plants, and typically involves structural modifications of the stem or roots and in a few species leaves. Most plant species that employ vegetative reproduction, do so as a means to perennialize the plants, allowing them to survive from one season to the next and often facilitating their expansion in size. A plant that persists in a location through vegetative reproduction of individuals constitutes a clonal colony, a single ramet, or apparent individual, of a clonal colony is genetically identical to all others in the same colony. The distance that a plant can move during vegetative reproduction is limited, though some plants can produce ramets from branching rhizomes or stolons that cover a wide area, often in only a few growing seasons. In a sense, this process is not one of "reproduction" but one of survival and expansion of biomass of the individual. When an individual organism increases in size via cell multiplication and remains intact, the process is called "vegetative growth". However, in vegetative reproduction, the new plants that result are new individuals in almost every respect except genetic. A major disadvantage to vegetative reproduction, is the transmission of pathogens from parent to daughter plants; it is uncommon for pathogens to be transmitted from the plant to its seeds, though there are occasions when it occurs.[1]

Seeds generated by apomixis are a means of asexual reproduction, involving the formation and dispersal of seeds that do not originate from the fertilization of the embryos. Hawkweed (Hieracium), dandelion (Taraxacum), some Citrus (Citrus) and Kentucky blue grass (Poa pratensis) all use this form of asexual reproduction. Pseudogamy occurs in some plants that have apomictic seeds, where pollination is often needed to initiate embryo growth, though the pollen contributes no genetic material to the developing offspring.[2] Other forms of apomixis occur in plants also, including the generation of a plantlet in replacement of a seed or the generation of bulbils instead of flowers, where new cloned individuals are produced.

[edit] Natural vegetative structures

The rhizome is a modified underground stem serving as an organ of vegetative reproduction, e. g. Polypody, Iris, Couch Grass and Nettles.

Prostrate aerial stems, called runners or stolons are important vegetative reproduction organs in some species, such as the strawberry, numerous grasses, and some ferns.

Adventitious buds form on roots near the ground surface, on damaged stems (as on the stumps of cut trees), or on old roots. These develop into above-ground stems and leaves.

A form of budding called suckering is the reproduction or regeneration of a plant by shoots that arise from an existing root system. Species that characteristically produce suckers include Elm (Ulmus), Dandelion (Taraxacum), and members of the Rose Family (Rosa).

Another type of a vegetative reproduction is the production of bulbs. Plants like onion (Allium cepa), hyacinth (Hyacinth), narcissus (Narcissus) and tulips (Tulipa) reproduce by forming bulbs.

Other plants like potatoes (Solanum tuberosum) and dahlia (Dahlia) reproduce by a method similar to bulbs: they produce tubers.

Gladioli and crocuses (Crocus) reproduce by forming a bulb-like structure called a corm.

[edit] Human uses of asexual reproduction

The most common form of plant reproduction utilized by people is seeds, but a number of asexual methods are utilized which are usually enhancements of natural processes, including: cutting, grafting, budding, layering, division, sectioning of rhizomes or roots, stolons, tillers (suckers) and artificial propagation by laboratory tissue cloning. Asexual methods are most often used to propagate cultivars with individual desirable characteristics that do not come true from seed.[3] Fruit tree propagation is frequently performed by budding or grafting desirable cultivars (clones), onto rootstocks that are also clones, propagated by layering.

In horticulture, a "cutting" is a branch that has been cut off from a mother plant below an internode and then rooted, often with the help of a rooting liquid or powder containing hormones. When a full root has formed and leaves begin to sprout anew, the clone is a self-sufficient plant,[4] genetically identical to the mother plant. Examples include cuttings from the stems of blackberries (Rubus occidentalis), African violets (Saintpaulia), verbenas (Verbena) to produce new plants. A related use of cuttings is grafting, where a stem or bud is joined onto a different stem. Nurseries offer for sale trees with grafted stems that can produce four or more varieties of related fruits, including apples. The most common usage of grafting is the propagation of cultivars onto already rooted plants, sometimes the rootstock is used to dwarf the plants or protect them from root damaging pathogens.[5]

Since vegetatively propagated plants are clones, they are important tools in plant research. When a clone is grown in various conditions, differences in growth can be ascribes to environmental effects instead of genetic differences.[4]

[edit] Sexual reproduction

Sexual reproduction involves two fundamental processes, meiosis which rearranges the genes and reduces the number of chromosomes, and fusion of gametes which restores the chromosome to a complete diploid number. In between these two processes, different types of plants vary. In plants and algae that undergo alternation of generations, a gametophyte is the multicellular structure, or phase, that is haploid, containing a single set of chromosomes:

The gametophyte produces male or female gametes (or both), by a process of cell division called mitosis. The fusion of male and female gametes produces a diploid zygote, which develops by repeated mitotic cell divisions into a multicellular sporophyte. Because the sporophyte is the product of the fusion of two haploid gametes, its cells are diploid, containing two sets of chromosomes. The mature sporophyte produces spores by a process called meiosis, sometimes referred to as "reduction division" because the chromosome pairs are separated once again to form single sets. The spores are therefore once again haploid and develop into a haploid gametophyte. In land plants such as ferns, mosses and liverworts the gametophyte is very small, as in ferns and their relatives. In flowering plants (angiosperms) It is reduced to only a few cells, where the female gametophyte (embryo sac) is known as a megagametophyte and the male gametophyte (pollen) is called a microgametophyte.

[edit] History of sexual reproduction

Unlike animals, plants are immobile, and cannot seek out sexual partners for reproduction. In the evolution of early plants, abiotic means, including water and wind, transported sperm for reproduction. The first plants were aquatic[citation needed] and released sperm freely into the water to be carried with the currents. Primitive land plants like liverworts and mosses had motile sperm that swam in a thin film of water or were splashed in water droplets from the male reproduction organs onto the female organs. As taller and more complex plants evolved, modifications in the alternation of generations evolved; in the Paleozoic era progymnosperms reproduced by using spores dispersed on the wind. The seed plants including seed ferns, conifers and cordaites, which were all gymnosperms, evolved 350 million years ago; they had pollen grains that contained the male gametes for protection of the sperm during the process of transfer from the male to female parts. It is believed that insects fed on the pollen, and plants thus evolved to use insects to actively carry pollen from one plant to the next. Seed producing plants, which include the angiosperms and the gymnosperms, have heteromorphic alternation of generations with large sporophytes containing much reduced gametophytes. Angiosperms have distinctive reproductive organs called flowers, with carpels, and the female gametophyte is greatly reduced to a female embryo sac, with as few as eight cells. The male gametophyte consists of the pollen grains. The sperm of seed plants are non-motile, except for two older groups of plants, the Cycadophyta and the Ginkgophyta, which have flagellated sperm.

[edit] Flowering plants

Flowering plants are the dominant plant form on land and they reproduce by sexual and asexual means. Often their most distinguishing feature is their reproductive organs, commonly called flowers. Sexual reproduction in flowering plants involves the production of male and female gametes, the transfer of the male gametes to the female ovules in a process called pollination. After pollination occurs, fertilization happens and the ovules grow into seeds with in a fruit. After the seeds are ready for dispersal, the fruit ripens and by various means the seeds are freed from the fruit and after varying amounts of time and under specific conditions the seeds germinate and grow into the next generation.

The anther produces male gametophytes, the sperm is produced in pollen grains, which attach to the stigma on top of a carpel, in which the female gametophytes (inside ovules) are located. After the pollen tube grows through the carpel's style, the sex cell nuclei from the pollen grain migrate into the ovule to fertilize the egg cell and endosperm nuclei within the female gametophyte in a process termed double fertilization. The resulting zygote develops into an embryo, while the triploid endosperm (one sperm cell plus two female cells) and female tissues of the ovule give rise to the surrounding tissues in the developing seed. The ovary, which produced the female gametophyte(s), then grows into a fruit, which surrounds the seed(s). Plants may either self-pollinate or cross-pollinate. Nonflowering plants like ferns, moss and liverworts use other means of sexual reproduction.

[edit] Adaptations

An Orchid flower.

Flowers of wind pollinated plants tend to lack petals and or sepals. Typically large amounts of pollen are produced and pollination often occurs early in the growing season before leaves can interfere with the dispersal of the pollen. Many trees and all grasses and sedges are wind pollinated, as such they have no need for large fancy flowers. In plants that use insects or other animals to move pollen from one flower to the next, plants have developed greatly modified flower parts to attract pollinators and to facilitate the movement of pollen from one flower to the insect and from the insect back to the next flower. Plants have a number of different means to attract pollinators including color, scent, heat, nectar glands, eatable pollen and flower shape. Along with modifications involving the above structures two other conditions play a very important role in the sexual reproduction of flowering plants, the first is timing of flowering and the other is the size or number of flowers produced. Often plant species have a few large, very showy flower while others produce many small flowers, often flowers are collected together into large inflorescences to maximize their visual effect, becoming more noticeable to passing pollinators. Flowers are attraction strategies and sexual expressions are functional strategies used to produce the next generation of plants, with pollinators and plants having co-evolved, often to some extraordinary degrees, very often rendering mutual benefit.

Flower heads showing disk and ray florets.

The largest family of flowering plants is the orchids (Orchidaceae), estimated by some specialists to include up to 35,000 species,[6] which often have highly specialized flowers used to attract insects and facilitate pollination. The stamens are modified to produce pollen in clusters called pollinium, which are attached to insects when crawling into the flower. The flower shapes are modified to force insects to pass by the pollen, which is "glued" to the insect. Some orchids are even more highly specialized, with flower shapes that mimic the shape of insects to attract them to 'mate' with the flowers, a few even have scents that mimic insect pheromones.

Another large group of flowering plants is the Asteraceae or sunflower family with close to 22,000 species,[7] which also have highly modified inflorescences that are flowers collected together in heads composed of a composite of individual flowers called florets. Heads with florets of one sex, when the flowers are pistillate or functionally staminate, or made up of all bisexual florets, are called homogamous and can include discoid and liguliflorous type heads. Some radiate heads may be homogamous too. Plants with heads that have florets of two or more sexual forms are called heterogamous and include radiate and disciform head forms, though some radiate heads may be heterogamous too.

[edit] Ferns

Ferns typically produce large diploid sporophytes with rhizomes, roots and leaves; and on fertile leaves called sporangium, spores are produced. The spores are released and germinate to produce short, thin gametophytes that are typically heart shaped, small and green in color. The gametophytes or thallus, produce both motile sperm in the antheridia and egg cells in separate archegonia. After rains or when dew deposits a film of water, the motile sperm are splashed away from the antheridia, which are normally produce on the top side of the thallus, and swim in the film of water to the antheridia where they fertilize the egg. To promote out crossing or cross fertilization the sperm are released before the eggs are receptive of the sperm, making it more likely that the sperm will fertilize the eggs of different thallus. A zygote is formed after fertilization, which grows into a new sporophytic plant. The condition of having separate sporephyte and gametophyte plants is call alternation of generations. Other plants with similar reproductive means include the Psilotum, Lycopodium, Selaginella and Equisetum.

[edit] Bryophytes

The bryophytes, which include liverworts, hornworts and mosses, reproduce both sexually and vegetatively. The gametophyte is the most commonly known phase of the plant. An early developmental stage in the gametophyte of mosses (immediately following germination of the meiospore) is called the protonema. All are small plants found growing in moist locations and like ferns, have motile sperm with flagella and need water to facilitate sexual reproduction. These plants start as a haploid spore that grows into the dominate form, which is a multicellular haploid body with leaf-like structures that photosynthesize. Haploid gametes are produced in antherida and archegonia by mitosis. The sperm released from the antherida respond to chemicals released by ripe archegonia and swim to them in a film of water and fertilize the egg cells thus producing a zygote. The zygote divides by mitotic division and grows into a sporophyte that is diploid. The multicellular diploid sporophyte produces structures called spore capsules, which are connected by seta to the archegonia. The spore capsules produce spores by meiosis, when ripe the capsules burst open and the spores are released. Bryophytes show considerable variation in their breeding structures and the above is a basic outline. Also in some species each plant is one sex while other species produce both sexes on the same plant.[8]

[edit] Sexual expression

Many plants have evolved a complex sexuality, which is expressed in different combinations of their reproductive organs. Some species have separate male and female individuals, some have separate male and female flowers on the same plant, abut the majority of plants have both male and female parts in the same flower. Some plants change their gender expression depending on a number of factors like age, time of day, or because of environmental conditions. Plant sexuality also varies within different populations of some species.

[edit] References

  1. ^ Fritz, Robert E.; Simms, Ellen Louise (1992). Plant resistance to herbivores and pathogens: ecology, evolution, and genetics. Chicago: University of Chicago Press. pp. 359. ISBN 978-0-226-26554-4. 
  2. ^ http://www.lifescientist.com.au/article/29781/why_apomixis_genetic_gold
  3. ^ Introduction To Plant Science. Delmar Thomson Learning. pp. 296. ISBN 978-1-4018-4188-1. 
  4. ^ a b Rooting cuttings of tropical trees. London: Commonwealth Science Council. 1993. pp. 9. ISBN 978-0-85092-394-0. 
  5. ^ Reiley, H. Edward; Shry, Carroll L. (2004). Introductory horticulture. Albany, NY: Delmar/Thomson Learning. pp. 54. ISBN 978-0-7668-1567-4. 
  6. ^ Orchidaceae in Flora of North America @ efloras.org
  7. ^ Asteraceae in Flora of North America @ efloras.org
  8. ^ Lovett Doust, Jon, and Lesley Lovett Doust. 1988. Plant reproductive ecology: patterns and strategies. New York: Oxford University Press. P 290.

Related Articles & Resources

Sources Subject Index - Experts, Sources, Spokespersons

Sources Select Resources Articles

This article is based on one or more articles in Wikipedia, with modifications and additional content by SOURCES editors. This article is covered by a Creative Commons Attribution-Sharealike 3.0 License (CC-BY-SA) and the GNU Free Documentation License (GFDL). The remainder of the content of this website, except where otherwise indicated, is copyright SOURCES and may not be reproduced without written permission. (For information call 416-964-7799 or use the Contact form.)

SOURCES.COM is an online portal and directory for journalists, news media, researchers and anyone seeking experts, spokespersons, and reliable information resources. Use SOURCES.COM to find experts, media contacts, news releases, background information, scientists, officials, speakers, newsmakers, spokespeople, talk show guests, story ideas, research studies, databases, universities, associations and NGOs, businesses, government spokespeople. Indexing and search applications by Ulli Diemer and Chris DeFreitas.

For information about being included in SOURCES as a expert or spokesperson see the FAQ or use the online membership form. Check here for information about becoming an affiliate. For partnerships, content and applications, and domain name opportunities contact us.

Sources home page